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Abstract—Polygenic Risk Scores (PRSs) estimate the likeli-
hood of a person to develop diseases based on their genetic
variations. Individual PRS values are frequently shared with
results of clinical studies or on online health platforms. We
demonstrate how a profit-seeking actor, such as an insurance
provider, can exploit PRSs to recover the associated genotypes
of individuals and to either de-anonymize these individuals
or infer their health traits. By framing genotype recovery as
the subset-sum problem with side information from population
statistics, we show how to reconstruct a significant portion of
an individual’s genome from their individual PRS values with
95% accuracy. The predicted genotypes or the PRS itself are
then sufficient to identify the individual or their relatives in
genealogy databases or public anonymized biobanks.

1. Introduction

A polygenic risk score (PRS) estimates an individual’s
genetic susceptibility to complex traits. It is increasingly
used in clinical settings to inform risk stratification, early
intervention, and personalized care. Leading genetic-testing
companies, such as 23andMe and Nebula Genomics, already
provide PRS estimates to consumers in their genetic reports.

While ethical and policy debates on the commercial use
of PRSs are emerging, the privacy risks of sharing individual
scores remain largely unexamined. A PRS is summary data
by nature, as it is a single number that represents the cumu-
lative effect of multiple genetic variants. It is not uncommon
for genetic studies to release anonymized individual scores
for reproducibility purposes or for customers of genetic-
testing companies to post their scores online to seek health
advice. However, even summarized or obfuscated genetic
data can be highly sensitive and can lead to re-identification
of patients [1] or exposure of their health status [2]. This
raises the question of whether PRSs expose private genetic
information, under what conditions they do so, and in what
scenarios this leakage can pose privacy risks. We answer
these questions in our study.

2. Background and threat scenarios

The human genome is organized into chromosomes,
each of which comes in paris—one inherited from the
mother and one from the father. Variations in these paired

DNA sequences contribute to individual differences in phys-
ical traits and disease susceptibility. The most common form
of genetic variation is the single nucleotide polymorphism
(SNP), a substitution of a single nucleotide at a specific
position in the genome relative to a standardized refer-
ence sequence. At a given SNP site, if both copies of
a person’s genome match the reference, the individual is
assigned a genotype of “0.” If one chromosome differs from
the reference whereas the other matches, the genotype is
“1.” If both differ from the reference, the genotype is “2.”
Genome-wide association studies (GWAS) examine SNPs
across the genomes of large populations to identify statistical
associations between genetic variants and specific diseases.

A PRS model is derived from the significant associations
found in GWAS. It is calculated as a linear combination
of the genotypes g → {0, 1, 2} of the associated SNPs and
effect weights ω. The effect weights are real numbers with
varying degree of precision (the number of decimal places),
which are released alongside other model metadata. The
score is normalized by the number of SNPs N and ploidy P :

PRS =

∑N
i=1 ωigi
P ·N (1)

In our threat model, an attacker accesses a panel of PRSs
with the corresponding metadata of anonymous or known
individuals, which might be released by a research study or
posted online. The attacker attempts to infer the associated
genotypes of these individuals and to either de-anonymize
them or uncover their sensitive phenotypic information.

3. Recovering genotypes from PRS

In order to infer an individual’s associated genotypes, the
adversary needs to find which effect weights ωi sum up to a
target score. This task is a variation of the classic subset-sum
problem, which, despite its NP-hardness, can be efficiently
solved under certain conditions. We reduce the genotype-
recovery task to an instance of the subset-sum problem by
defining the effect weights as the number set and the PRS
value as the target sum. The number of times each effect
weight (0, 1, or 2) is used in the solution determines the
genotype for each corresponding SNP.

The hardness of the subset-sum problem is traditionally
defined by using the concept of density [3]. It represents the
ratio between the size of the number set and the length of



the bit representation of the largest weight. Higher density
indicates that there are more weights relative to the bit
length of the largest weight and, hence, a tighter distri-
bution of possible subset sums. Problems with a higher
density are more difficult to solve because multiple sub-
sets can yield the same sum. We adapt this concept to
genetic data and define the density d of a PRS instance as
d = N

log3(max1→i→N decimal(ωi))
, which enables us to assess

what problem instances are tractable.
We develop a dynamic programming algorithm with

the meet-in-the-middle optimization and additional heuris-
tics [4] to infer the SNP genotypes from a PRS. This
algorithm, however, identifies all valid solutions, i.e., all
possible genotype sets that result in the target PRS. To assess
the plausibility of each potential solution, we calculate a
log-likelihood score by using genotypes frequencies from
the target individual’s population. We compute the sum of
the log-probabilities for the identified genotypes in each
solution and select the solution with the highest total sum.
The core idea is that a solution that closely aligns with
the population average is more likely to be correct. Finally,
we incorporate continuous log-likelihood estimation directly
into the dynamic-programming algorithm. For each interme-
diate sum, we store pointers only to the subsets that result in
the highest likelihood, thereby reducing memory complexity
from exponential to pseudo-polynomial.

PRS models frequently share overlapping SNPs, as a ge-
netic mutation can affect multiple traits. When an adversary
gets access to multiple PRS values of an individual, e.g.,
from a genetic report [5], they can exploit this overlap to
improve recovery accuracy. The strategy is to first predict
genotypes for the PRSs with fewer SNPs and to retain
the genotypes of the overlapping SNPs from the previous
solution for each subsequent PRS. When incorporating so-
lutions from a previous PRS, if the solution for the current
PRS fails, it suggests that the integrated genotypes might be
incorrect, which we can revisit and correct.

4. De-anonymization and phenotype inference

PRSs are designed to stratify individuals by their genetic
risk. Besides clinical utility, this can make PRSs a powerful
identification tool. An attacker can re-identify anonymous
individuals or their close relatives, e.g., study participants
or online forum users, by uploading their recovered geno-
types to a genealogy database and finding genetic matches.
Genealogy databases do not provide direct access to individ-
uals’ genomes but they allow users to query the database.

Moreover, if the attacker has access to an anonymized
genotype-phenotype database, e.g., UK Biobank, and a PRS
value and model of a known individual for some trait, the
attacker can link the PRS to a database sample without
computationally intensive genotype recovery and learn other
sensitive traits that the individual might have [6]. The linking
is simple: the attacker calculates the PRS for every sample in
the database and finds the one that matches the target. This
approach relies on determining how unique PRS values are
across individuals which we evaluate in our experiments.

5. Evaluation

Solvability. We first analyzed all PRS models published in
the PGS Catalog [7] to assess the proportion that would be
vulnerable if an individual’s PRS were shared. Following
prior work on the subset-sum problem, we determined PRS
instances with density d < 2.5 to be solvable. Based on
this density, we found that 454 out of 4,723 published PRS
models were vulnerable to genotype recovery. The largest
vulnerable PRS model included 95 SNPs and had the effect
weights with up to 21 decimal digits, whereas the median
weight precision across all models was 15 decimal places.
Genotype recovery. We evaluated genotype recovery by us-
ing whole-genome sequencing data from the 1000 Genomes
Project (2,535 samples) and a panel of 298 PRSs, up to
50 SNPs each, from the PGS catalog for various diseases.
The total number of encompassed SNPs was 4,821 SNPs,
of which 2,654 were unique. For each sample, we first
calculated the PRS values and then attempted to predict
the original SNPs genotypes by using our algorithms. We
achieved a median genotype prediction accuracy of 94.6%
with 2,600 SNPs predicted on average. The baseline of
predicting the most common genotypes in the population for
each SNP achieved only 70% accuracy. We also observed
that genotype prediction was the least accurate for the SNPs
with equally likely genotypes in the population.
De-anonymization and score uniqueness. We used the
KING-robust algorithm [8] and the 1000 Genomes dataset
to emulate genealogy search. Despite only 2,600 partially
correct predicted SNPs, we were able to link each individual
to themselves with 100% accuracy. We were also able to
link individuals to their first- and second-degree relatives (68
samples) with >80% precision and recall. Finally, we studied
the UK Biobank dataset (500K samples) and found that a
single PRS based on 27 SNPs, on average across all weight
precisions, sufficed to uniquely identify 95% of individuals.
Even when the scores overlapped, the same score was often
shared by only few individuals. In PRS models with 14
SNPs, the median anonymity-set size was two.
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Polygenic Risk Scores (PRSs) are a popular clinical tool for the estimation 
of an individual’s genetic susceptibility to diseases. We show that a profit-
seeking actor, e.g., an insurance company, can recover the associated 
genotypes from publicly shared PRSs and use them to either de-
anonymize individuals or infer sensitive traits of known patients. S

U
M

M
A

R
Y

R
IS

K
 S

C
EN

A
R

IO
S

T2D 0.37
SLE 0.83
MI 0.04

recovered 
genotypes

g1 g2 … gi … gn
2 1 ? ?

de-identified / anonymous sharing
Scientific

IS
SN

Jo
urn
al

shared with an identity

D
e

-an
o

n
y

m
ize

C
o

n
d

itio
n

 
d

isclo
su

re

AMR SAS AFR EUR EAS
Ancestry

70

80

90

100

R
ec

ov
er

y
ac

cu
ra

cy
,
%

Baseline

94.6

genetic genealogy 
databases

genotype-phenotype 
databases

Target person 
Name, Lastname
Genetic relatives 
Name, Lastname 

relationship degree

Name, Lastname
Major Depressive 

Disorder
Substance Use 

DisorderRECOVERING 
GENOTYPES 
FROM A PRS

SOLVING THE 
SUBSET-SUM 
PROBLEM

BACKGROUND

##POLYGENIC SCORE (PGS) INFORMATION
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#variants_number=10
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