
Poster: Software Vulnerability Detection: A Grand
Challenge for AI

1st Aayush Gupta
Computer Science

University of Houston
Houston, Texas, United States

agupta56@cougarnet.uh.edu

2nd Arthur Dunbar
Computer Science

University of Houston
Houston, Texas, United States

apdunbar@cougarnet.uh.edu

3rd Rakesh M. Verma∗
Computer Science

University of Houston
Houston, Texas, United States

rmverma2@central.uh.edu

Abstract—Bugs in software are notorious for causing rocket
crashes, equipment failures, and enabling attacks on critical
infrastructure. Fuzzing and manual detection are the best ap-
proaches so far, both of which are incomplete and cannot
prove the absence of bugs. Machine learning approaches to
automatic bug detection have been studied since the late 1990s,
but their record is mixed at best. Large language models have
also struggled at this task. In this poster, we propose automatic
bug detection as a grand challenge for artificial intelligence and
suggest a way forward which includes an approach based on
multimodal models, quality datasets, and customized prompts.

Index Terms—software bug detection, multimodal models,
prompt engineering

I. GRAND CHALLENGE

Bugs in software have caused enormous damage especially
in the interconnected age of the internet.1 Fuzzing [16] and
manual detection (aka debugging) are the approaches to find
and fix bugs. Both are known to be incomplete. Run-time
verification [11] and combinations of static with dynamic
analysis have also been proposed. Automatic detection of bugs
using machine learning has been receiving increasing attention
since at least 2018 [4], [7]. However, machine learning models
including large language models have struggled with this task
and the problem of software vulnerability detection is as
prevalent as ever. Hence, we propose the task of automatic
software vulnerability detection as a grand challenge for AI.

To suggest a way forward, we first examine nine popular
datasets for this task and reveal their shortcomings. We then
propose our vision for this challenge consisting of multimodal
models, high quality datasets and customized prompts.

II. DATASETS

Numerous datasets have been proposed to address the
challenges of vulnerability detection. Here, we focus on the
following nine datasets because of their size, popularity, and
machine learning suitability:

1) Big-Vul [5] gathers vulnerability fixes from GitHub
projects with CVE metadata. 3,754 bugs 91 types.

2) Devign [15] manually labeled datasets from four open-
source C projects (2 released publicly).

*On Sabbatical during AY 2024-25 at NSWC Dahlgren, Virginia
1https://www.pingdom.com/blog/10-historical-software-bugs-with-

extreme-consequences/-accessed14April2025.

3) DiverseVul [3] 18,945 vulnerable functions covering
150 CWEs and 330,492 non-vulnerable functions from
diverse projects.

4) MegaVul [9] expands on Big-Vul making a larger, more
diverse dataset with 17,380 vulnerabilities of 169 types.

5) RealVul [1] tries to simulate real-world scenarios and
include entire codebases.

6) MVDSC [14] normalizes variable and function names
for generalization.

7) VulDeePecker (VDP) [8] uses code gadgets to represent
programs.

8) ReVeal [2] focused on the limitations of current datasets.
Emphasizes realistic settings.

9) D2A [13] sources data from GitHub. Makes use of static
analysis on before and after of bug fixes to reduce errors.

III. RESULTS

We evaluate the software vulnerability datasets using four
metrics we created. These four metrics can be found in Table
I,II,III and on the classifier difficulty score table found on our
poster. Each of these four metrics generates a score for each
dataset, which is scaled so that the largest score is a 1. These
scores are then averaged together to give an overall score for
the dataset, which can be found in Table IV. We analyze the
performance of the aforementioned machine learning models
across these datasets. We also analyze the results of running
the datasets through CleanLab [10], what the datasets return
for Vendi Scores [6] based upon N-grams of 1 to 3, and we also
score the datasets based on their coverage of code constructs.

IV. PROPOSED ROADMAP

We suggest that: (a) high quality datasets should be con-
structed that retain the context necessary for the manifestation
of their bugs, (b) usage of multiple modalities, e.g., abstract
syntax tree, code property graphs [12], and the code itself,
be provided to either an ensemble of models or a multimodal
model. With such an approach the model has the potential to
pick up true signals of bugs, and (c) prompt engineering in case
LLMs are used. To measure data quality, we use these metrics,
ground truth, coverage and diversity. Ground truth means that
the non-vulnerable examples should be chosen carefully so as
not to contain any vulnerabilities. By coverage we mean, for

TABLE I
CLEANLAB RESULTS. THESE ARE RESULTS FROM RUNNING CLEANLAB
(* 50,000 SAMPLED BECAUSE REALVUL’S EXAMPLES ARE TOO BIG TOO
HOLD IN MEMORY). THE CLEANLAB RESULTS SCORE (CRS) COLUMN IS
DETERMINED BY (1 - MAX(0, (NEAR DUP%-.2)*1.25) + 1 - LABEL INC%
+ 1 - (OUTLIERS% * 10) + 1 / (1 + UNDERPERFORMING GROUPS (UPG)))
/ 4.

Dataset ND LI Outlier UPG Score
ReVeal 19.15% 3.69% 0.47% 0 0.992
Devign 12.89% 33.57% 0.93% 0 0.905
MVDSC 10.07% 5.68% 4.60% 7 0.661
VDP 60.21% 25.72% 5.97% 6 0.452
RealVul* 7.53% 0.07% 2.65% 0 0.946
BigVul 4.20% 3.47% 0.18% 0 1.000
MegaVul 0.64% 2.25% 0.49% 0 0.993
Diversevul 18.34% 2.57% 0.38% 5 0.786
D2A 99.48% 1.00% 8.37% 7 0.327

TABLE II
VENDI SCORE RESULTS. THE VENDI SCORE (VS) IS DETERMINED BY
SOFTMAXING THE LOG OF THE VENDI SCORE. THE N-GRAMS ARE SIZE 1
TO 3.

Dataset N-gram VS Score
ReVeal 1263.95 0.511
Devign 916.91 0.371
MVDSC 81.03 0.033
VDP 87.50 0.035
RealVul 1149.98 0.465
BigVul 2471.78 1.000
MegaVul 1015.81 0.411
Diversevul 2297.56 0.930
D2A 124.06 0.050

TABLE III
CONSTRUCTS COVERAGE RESULTS. CONSTRUCT COVERAGE IS THE
NUMBER OF PROGRAMMING CONSTRUCTS COVERED BY AT LEAST ONE
EXAMPLE IN THE DATASET. THE CONSTRUCT COVERAGE SCORE (CCS) IS
DETERMINED BY PERCENT OF ESTIMATED AVAILABLE CONSTRUCTS
GIVEN THE LANGUAGES USED.

Dataset has c++? CS Score
ReVeal yes 260 0.729
MVDSC yes 163 0.457
VDP yes 189 0.530
RealVul yes 338 0.948
BigVul yes 291 0.816
MegaVul yes 315 0.884
Diversevul yes 321 0.900
D2A yes 229 0.642
C++ Total Est. yes 416 -
Devign no 234 1.000
C Total Est. no 275 -
All Datasets Coverage yes 346 -

the set of programming languages used in the dataset, how
many of the code constructs that exist in those languages are
represented in the dataset. By diversity we seek to measure
also the different types of bugs and the different ways in which
they are manifested in the vulnerable examples.

ACKNOWLEDGMENTS

Research partly supported by NSF grants 2210198 and
2244279, ARO grant W911NF-23-1-0191, and an ONR Sab-
batical Faculty Fellowship. Verma is the founder of Everest
Cyber Security and Analytics, Inc.

TABLE IV
TOTAL SCORE (TS) CALCULATED BY AVERAGING THE OTHER SCORES.
CDS OR CLASSIFIER DIFFICULTY SCORE CAN BE FOUND ON OUR POSTER

Dataset CDS CRS VS CCS TS
ReVeal 0.960 0.992 0.511 0.729 0.798
Devign 0.671 0.905 0.371 1.000 0.737
MVDSC 0.249 0.661 0.033 0.457 0.350
VDP 0.260 0.452 0.035 0.530 0.319
RealVul 0.552 0.946 0.465 0.948 0.728
BigVul 0.626 1.000 1.000 0.816 0.861
MegaVul 0.794 0.993 0.411 0.884 0.771
Diversevul 1.000 0.786 0.930 0.900 0.904
D2A 0.635 0.328 0.050 0.642 0.414

REFERENCES

[1] P. Chakraborty, K.K. Arumugam, M. Alfadel, M. Nagappan, and
S. McIntosh. Revisiting the performance of deep learning-based vul-
nerability detection on realistic datasets. 2024.

[2] S Chakraborty, R Krishna, Y Ding, and B Ray. Deep learning based
vulnerability detection: Are we there yet? IEEE Transactions on
Software Engineering, 48(9):3280–3296, 2022.

[3] Y Chen, Z Ding, L Alowain, X Chen, and D Wagner. Diversevul: A
new vulnerable source code dataset for deep learning based vulnerability
detection. 2023. Available: https://arxiv.org/abs/2304.00409.

[4] B Chernis and R Verma. Machine learning methods for software
vulnerability detection. In R Verma and M Kantarcioglu, editors,
Proc. 4th ACM Int’l Workshop on Security and Privacy Analytics,
IWSPA@CODASPY 2018, Tempe, AZ, USA, March 2018, pages 31–39.
ACM, 2018.

[5] J Fan, Y Li, S Wang, and T Nguyen. A c/c++ code vulnerability dataset
with code changes and cve summaries. In Proceedings of the 17th
International Conference on Mining Software Repositories, pages 508–
512, New York, NY, USA, 2020. ACM.

[6] D Friedman and A Dieng. The vendi score: A diversity evaluation metric
for machine learning, 2023.

[7] J Harer, L Kim, R Russell, et al. Automated software vulnerability
detection with machine learning. CoRR, abs/1803.04497, 2018.

[8] Z Li, D Zou, S Xu, X Ou, H Jin, S Wang, Z Deng, and Y Zhong.
Vuldeepecker: A deep learning-based system for vulnerability detection.
CoRR, abs/1801.01681, 2018.

[9] C Ni, L Shen, X Yang, Y Zhu, and S Wang. Megavul: A c/c++
vulnerability dataset with comprehensive code representations. In
Proceedings of the 21st International Conference on Mining Software
Repositories, pages 738–742. ACM, 2024.

[10] C Northcutt, L Jiang, and I Chuang. Confident learning: Estimating
uncertainty in dataset labels. J. Artif. Int. Res., 70:1373–1411, May
2021.

[11] O Pieczul and S Foley. Runtime detection of zero-day vulnerability
exploits in contemporary software systems. In Data and Applications
Security and Privacy XXX, volume 9766 of LNCS, pages 347–363.
Springer, 2016.

[12] F Yamaguchi, N Golde, D Arp, and K Rieck. Modeling and discovering
vulnerabilities with code property graphs. In IEEE symposium on
security and privacy, pages 590–604, 2014.

[13] Y Zheng, S Pujar, B Lewis, L Buratti, E Epstein, B Yang, J Laredo,
A Morari, and Z Su. D2A: A dataset built for ai-based vulnerability
detection methods using differential analysis. CoRR, abs/2102.07995,
2021.

[14] X Zhou and R Verma. Software vulnerability detection via multimodal
deep learning. In Gabriele Lenzini and Weizhi Meng, editors, Security
and Trust Management, pages 85–103. Springer International Publish-
ing, Cham, 2023.

[15] Y Zhou, S Liu, J Siow, X Du, and Y Liu. Devign: Effective vulnerability
identification by learning comprehensive program semantics via graph
neural networks. CoRR, abs/1909.03496, 2019. Available: http://arxiv.
org/abs/1909.03496.

[16] X Zhu, S Wen, S Camtepe, and Y Xiang. Fuzzing: a survey for roadmap.
ACM Comp. Sur. (CSUR), 54(11s):1–36, 2022.

Software Vulnerability Detection: A Grand Challenge for AI

Aayush Gupta, Arthur Dunbar, Rakesh Verma
Dept. of Computer Science, University of Houston

1. The Grand Challenge
• Software bugs can lead to catastrophic failures – from spacecraft crashes

to cybersecurity breaches.
• Traditional detection methods l ike fuzzing or manual review are incomplete.
• Machine learning and even LLMs have yet to solve this effectively.

2. Da tasets
• We analyzed 9 datasets: BigVul, Devig n, Divers eVul, D2A, MegaVul,

MVDSC, ReVeal, RealVul, and VulDEEPecker (VDP).
• Each dataset has unique strengths (e.g., size, CWE diversity, realism) and

weaknesses (e.g., duplication, imbalance).
• Existing datasets are noi sy, inconsi stent, or lack generalization.
• As shown in Figure 3, these datasets originate from common sources like

SARD, QEMU, and Juliet, indicating l imited diversity.

3. Models & Approach
• 4 Classical ML: Logistic Regression, SVM, Random Forest, AdaBoost.
• 3 DL models: DistilBERT, CodeBERT, RCNN.
• All models were evaluated on F1 Score across datasets in Table 3.
• DL models benefit from semantic understanding.

Fi gure 3. Relationship between foundational datasets and derived datasets. This
visualization highlights how core datasets like SARD, Jul iet, QEMU, and FFMpeg serve as

the foundational sources (shown as dotted rectangul ar nodes) for widel y used derived
datasets like MVDSC, DiverseVul, and MegaVul (shown as rounded rectangular nodes).
The colored directional arrows indicate the flow of contribution from each source to the

resulting dataset.

Fi gure 1. 3D PCA visualization of TF-IDF-encoded functions from
the chos en 9 datasets . Color–coded by vulnerability label, the plot
shows cl ustering patterns that indicate separability of vulnerability

and non-vulnerabil ity functions.

Table 1. Static analysi s results from CPPCHECK across 9 SVD
datasets. Each cell reports the number of code samples flagged

with errors by CPPCHECK versus the total number of samples in that
category (f lagged: total).

4. Results & Insights
• Classical ML still fails on most datasets.
• DistilBERT and CodeBERT show promise.
• Divers eVul and BigVul achieve the highest total quality scores,

combining diversity, coverage, and low noise.
• D2A and VDP exhibit high duplication, label noise, and outliers.
• Total Score (TS) was computed by averaging four key metrics: CDS

(difficulty), CRS (noise), VS (diversity), and CCS (code coverage).
• Table 2 summarizes these scores – Divers eVul leads, while

MVDSC and D2A l ag behind

Dataset Vulnerable Non-Vulnerable

BigVul 14:10900 57:177736

Devig n 1464:12460 648:14858

Divers eVul 3310:18945 7488:330492

D2A 1777:18653 158:1276970

MegaVul 36:17380 158:322168

MVDSC 5741:16142 17606:38858

ReVeal 479:2240 1924:20494

RealVul 2049:7555 78:88282

VDP 17723:17725 43888:43913

Table 2. Relati ve Scoring of Datasets. Each dataset is scored on four
metrics. Classifier Difficul ty Score (CDS): how difficult it is to classify
using simple cl assifiers. CleanLab Resul ts Score (CRS): based upon

scores from CleanLab. Vendi Score (VS): How much diversity the dataset
has. Code Construct Coverage Score (CCS): How many code constructs
does this dataset represent? These four metrics are averaged to give the

Total Score (TS).

Fi gure 2. CleanLab based quali ty iss ues in the datasets. Onl y datasets
with ≥ 5% incidence of Near Dupl ic ate (blue), Label Inconsistencies

(green), or Outliers (red) have been connected.

Table 3.F1 Scores for Clas sical and Deep Learning Models across datas ets (* datasets
are the cleaned version). The Classification Difficulty Score (CDS) is determined by

subtracting the average F1 Score across all models from 1. This score is meant to capture
how difficul t the dataset is to cl assify using simpl e methods.

	Slide 1

