
Poster: CPU-Print: From Multiplying Matrices to
Uniquely Identifying Devices using DVFS

Kaustav Goswami, Hari Venugopalan, Ryan Swift†, Chen-Nee Chuah, Jason Lowe-Power, Zubair Shafiq
University of California, Davis †University of Southern California

{kggoswami,hvenugopalan,chuah,jlowepower,zshafiq}@ucdavis.edu, ryanswif@usc.edu

Privacy concerns have led to increasing restrictions on
stateful identifiers [3], [11], [18]. Consequently, the research
community is paying significant attention towards developing
novel stateless device fingerprinting techniques [5], [15], [20],
[21], [23]. Fingerprinting, which uniquely identifies devices,
users, or browsers, is applied in fraud detection, bot detec-
tion [24], user tracking [9], [22] etc..

An ideal fingerprinting technique must be unique, stable
and robust [8]. This means that the technique needs to capture
sufficient differences in terms of software and/or hardware
to distinguish homogeneous devices, with and without back-
ground noise. In addition, the fingerprint should remain stable
over a sufficiently long time period despite background noise.

(a) Fingerprint.js unique identifier
string on system A.

(b) Fingerprint.js unique identifier
string on system B.

Fig. 1. Demonstration of generating the same fingerprint on two identically
configured systems.

Fingerprint.js [9] is a widely used software-based finger-
printing technique, that aggregates both software and hardware
parameters to uniquely identify devices. However, it may gen-
erate identical identifiers in homogeneous settings, as shown
in Figure 1.

To overcome the issue mentioned above, researchers have
proposed various hardware-based device fingerprinting tech-
niques [5], [15], [20], [21], [23] based on side-channels.
These techniques leverage stable hardware properties until the
hardware is changed. Sanchez-Rola et al. exploited a high-
resolution timing-based side channel to fingerprint CPUs [20].
Laor et al. introduced DRAWNAPART [21] to fingerprint
browsers using the underlying GPU via the WebGL library,
with timing side-channel signals as fingerprints. Standalone
power side-channels on the other hand, have been exploited
to leak cryptographic keys [16], [25], [26]. Researchers have
combined this channel for fingerprinting, notably website [19]
and app [4] fingerprinting. DF-SCA [6] proposed the idea of
using DVFS for website fingerprinting.

Building on previous works, we hypothesize the existence
of a fingerprinting signal based on the CPU’s power draw,
specifically the frequency state of the CPU core. Toward this,
we create power-viruses to exploit this signal from the user-

space. We define a power-virus in our work as a program
that can draw various amount of power. Changes in CPU
cores’ power draw alter the frequency state. Variations in
CPU fabrication [14] manifest as timing differences when
controlled by the fingerprinter. Therefore we present CPU-
Print that correlates DVFS-based power side-channels with
device fingerprinting. Even though we hype “power-viruses”,
however, in reality, it is a simple matrix multiplication pro-
gram. We perform some ALU operation (load) on the CPU
cores and then force the CPU cores to sleep. We then change
the load per unit interval to follows a certain periodic function
f(x + P ) = f(x);P > 0, to maximize the signal. We
hypothesize that the power draw of our power-virus needs
to be instantaneous but long enough to trigger the frequency
scaling mechanism.

Operating systems (OS) today use power profiles like
power governors in Linux to manage the utilization-to-power
ratio of the CPU cores [2], [7], [17]. From our testing,
we found that the default power governor in Linux and
Android is ondemand from the pool of performance,
ondemand and powersave. The ondemand governor
samples CPU load and switches between frequency states,
while performance maintains maximum frequency, scaling
down during temperature throttling. Conversely, powersave
keeps the frequency at the minimum possible frequency state.
Changing the power governor in Linux requires root privileges.
However, an unprivileged user can read the frequency state file
(scaling_cur_freq).

There are three primary challenges for us to address:

• Although Linux covers the majority of devices, CPU-
Print must be OS-agnostic.

• A JavaScript-based web implementation is needed for
broader reach, but JavaScript’s sandbox restricts access
to system files like scaling_cur_freq.

• Overcoming low-resolution clocks in browsers, which
were patched because of privacy concerns [1], [21].

We address all the challenges comprehensively. Measuring
the relationship between the DVFS governor and power and
frequency data is not trivial. We design our custom-clock for
CPU-Print to measure elapsed time of a fixed computation, as
this is directly related to the frequency and power usage of
the CPU, and is measurable within a browser at millisecond
resolution [10], [13]. We use a constant function in a loop to
approximate a fixed interval of time. We run the loop 1000



TABLE I
RESULTS OBSERVED ACROSS DIFFERENT CLASSIFIERS

Base Model # of model params
(incl. classifier) Accuracy F1 Score Precision Recall

DTW N/A 0.6914 0.6918 0.6909 0.6926
MLP 2,181,505 0.8800 0.9474 0.9000 1.0000
FCN 33,090,433 0.8500 0.9455 0.8966 1.0000

ResNet [12] 8,255,297 0.5250 0.6885 0.5385 0.9545

times to get around the low resolution timer problem. The
clock runs concurrently with the power virus, collecting timing
values into an array, as the power-virus induces state switches
in DVFS. The power-virus forces scaling to higher frequency
as load per unit increases. The CPU cores draw more power
at higher frequency which leads to increased temperature and
faster computation. When the load per unit starts decreasing,
CPU cores starts drawing less power and the governor scales
to a lower frequency. There will be throttling due to the CPU
core’s thermal limitations. This forces the governor to scale.
All the scaling values adds to the fingerprint signal.

We position ourselves as the fingerprinter whose goal is to
extract unique and stable fingerprints from both homogeneous
and heterogeneous devices. In our threat model, the finger-
printer can run the power-virus on the user’s device via the
web, producing a series of timing values per sampling interval
up to 1 minute.

In this abstract, we show results from our in-the-wild
deployment. We collected 50,000 traces of multiple power-
viruses: step, sine curve, saw-tooth, inverse-saw-tooth and
delta with the same time period for each of the periodic
function. There were 225 unique devices with two or more
traces, which we used for fingerprint training and later for
testing. We collected a cookie as the ground truth. Table I
shows different statistics when using different classifiers. A
random classifier is our baseline as it will always have a
maximum accuracy of 0.500. We use DTW, 1D CNN (MLP),
FCN and ResNet to measure the similarity between the two
traces. While DTW is sufficient for device-type fingerprinting,
we use a ML-based classifier for device fingerprinting. The
accuracy of 1D CNN and FCN is fairly high, up to 88% for
the former, compared to a simple distance-based technique like
DTW and a more complex technique like ResNet.

Concretely, our contributions in this abstract are:
• A DVFS-based device fingerprinting technique.
• We collected in-the-wild data via a large-scale deploy-

ment of our technique and collected 50,000 traces across
225 unique devices and saw up to 88% fingerprinting
accuracy.

As for future work, our plan is to perform extensive in-lab
experiments for testing the robustness of CPU-Print.

REFERENCES

[1] [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/API/Performance API/High precision timing

[2] Apple. [Online]. Available: https://support.apple.com/en-us/101613
[3] ——, “User Privacy and Data Use,” https://developer.apple.com/app-

store/user-privacy-and-data-use/.
[4] Y. Chen, X. Jin, J. Sun, R. Zhang, and Y. Zhang, “Powerful: Mobile

app fingerprinting via power analysis,” in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, 2017, pp. 1–9.

[5] Y. Cheng, X. Ji, J. Zhang, W. Xu, and Y.-C. Chen, “Demicpu: Device
fingerprinting with magnetic signals radiated by cpu,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. ACM, 2019, p. 1149–1170.

[6] D. R. Dipta and B. Gulmezoglu, “Df-sca: Dynamic frequency side
channel attacks are practical,” in Proceedings of the 38th Annual
Computer Security Applications Conference, ser. ACSAC ’22. ACM,
2022, p. 841–853.

[7] Dominik Brodowski, Nico Golde, Rafael J. Wysocki and
Viresh Kumar, “Linux CPUFreq CPUFreq Governor,”
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt.

[8] P. Eckersley, “How unique is your web browser?” in Proceedings of the
10th International Conference on Privacy Enhancing Technologies, ser.
PETS’10. Springer-Verlag, 2010, p. 1–18.

[9] FingerprintJS, “FingerprintJS,” https://github.com/fingerprintjs/fingerprintjs.
[10] M. Firefox, “Performance: now() method,” Tech. Rep.,

2024. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/API/Performance/now

[11] Google, “Advertising ID,” https://support.google.com/googleplay/android-
developer/answer/6048248.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[13] P. Irish, “When milliseconds are not enough - perfor-
mance.now,” Google Chrome, Tech. Rep., 2012. [Online].
Available: https://developer.chrome.com/blog/when-milliseconds-are-
not-enough-performance-now/

[14] J. Lee, D. Lim, B. Gassend, G. Suh, M. van Dijk, and S. Devadas, “A
technique to build a secret key in integrated circuits for identification
and authentication applications,” in 2004 Symposium on VLSI Circuits.
Digest of Technical Papers (IEEE Cat. No.04CH37525), 2004, pp. 176–
179.

[15] D. Li, D. Liu, Y. Ren, Z. Wang, Y. Sun, Z. Guan, Q. Wu, and
J. Liu, “Fphammer: A device identification framework based on dram
fingerprinting,” 2023.

[16] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “Platypus: Software-based power side-channel attacks on
x86,” in 2021 IEEE Symposium on Security and Privacy (SP), 2021, pp.
355–371.

[17] Microsoft, “Processor power management options overview,” Tech.
Rep., 2024. [Online]. Available: https://learn.microsoft.com/en-
us/windows-hardware/customize/power-settings/configure-processor-
power-management-options

[18] Mozilla, “Using HTTP cookies,” https://developer.mozilla.org/en-
US/docs/Web/HTTP/Cookies.

[19] Y. Qin and C. Yue, “Website fingerprinting by power estimation based
side-channel attacks on android 7,” in 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Com-
munications/ 12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), 2018, pp. 1030–1039.

[20] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Clock around the clock:
Time-based device fingerprinting,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’18. ACM, 2018, p. 1502–1514.

[21] Tomer Laor and Naif Mehanna and Antonin Durey and Vitaly Dyadyuk
and Pierre Laperdrix and Clé mentine Maurice and Yossi Oren and
Romain Rouvoy and Walter Rudametkin and Yuval Yarom, “DRAWN
APART : A Device Identification Technique based on Remote GPU
Fingerprinting,” in Proceedings 2022 Network and Distributed System
Security Symposium. Internet Society, 2022.

[22] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Fp-stalker:
Tracking browser fingerprint evolutions,” in 2018 IEEE Symposium on
Security and Privacy (SP), 2018, pp. 728–741.

[23] H. Venugopalan, K. Goswami, Z. A. Din, J. Lowe-Power, S. T. King, and
Z. Shafiq, “Fp-rowhammer: Dram-based device fingerprinting,” 2024.

[24] H. Venugopalan, S. Munir, S. Ahmed, T. Wang, S. T. King, and
Z. Shafiq, “Fp-inconsistent: Detecting evasive bots using browser fin-
gerprint inconsistencies,” 2025.

[25] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power Side-Channel attacks into
remote timing attacks on x86,” in 31st USENIX Security Symposium
(USENIX Security 22), Aug. 2022, pp. 679–697.

[26] L. Yan, Y. Guo, X. Chen, and H. Mei, “A study on power side channels
on mobile devices,” in Proceedings of the 7th Asia-Pacific Symposium
on Internetware, ser. Internetware ’15. ACM, 2015, p. 30–38.



CPUPrint: From Multiplying Matrices to Uniquely Identifying 
Devices using DVFS

Kaustav Goswami1, Hari Venugopalan1, Ryan Swift2, Chen-Nee Chuah1, Jason Lowe-Power1, Zubair Shafiq1
1University of California, Davis           2University of Southern California

Problem Statement Background

Results

● There is a growing restriction
against stateful identifiers due to
privacy concerns [1].

● We need to design a new hardware-
based fingerprinting techniques with:
○ Stateless
○ Robust
○ Stable
○ Accessible from the user-space

Contributions
● A new device fingerprinting technique.
● Large-scale in the wild deployment with 

50,000 traces across 225 unique devices.
● Hierarchical fingerprinting.

Motivation

References

● Software-based fingerprinting
techniques are fast and but less
stable.

● However, they can have a high
false-positive rate in homogeneous
settings.

Related Works
● Hardware-based fingerprinting:

○ Clock-around-the-clock (CPU) [2]
○ DRAWNAPART (GPU) [3]
○ DF-SCA (DVFS) [4]

● Power side-channels
○ PLATYPUS [5]

● Power side-channel + Fingerprint
○ Qin et al. [6]: Website fingerprinting
○ POWERFUL [7]: App fingerprinting

● Modern-day operating systems have power governors.
● Default power governor on Linux is ondemand or schedutil.
● The frequency of the CPU cores is scaled based on the utilization.
● Higher utilization draws more power.
● This changes the frequency state of the CPU via voltage scaling.

Challenges
● Platform-agnostic design.
● A JavaScript-based web 

implementation
● Overcoming low-resolution clocks in 

browsers.

Power-Virus

Objective
● Exploit CPU frequency readings as 

the fingerprint signal.
Model Params Accuracy F1 Score Precision Recall

DTW N/A 0.6914 0.6918 0.6909 0.6926

MLP 2,181,505 0.8800 0.9474 0.9000 1.0000

FCN 33,090,433 0.8500 0.9455 0.8966 1.0000

ResNet 8,255,297 0.5250 0.6885 0.5385 0.9545

Time unit
Fr

eq
ue

nc
y 

(H
z)

[1] Mozilla, “Using HTTP cookies”
[2] I. Sanchez-Rola et al., “Clock around the clock: Time-based device
fingerprinting,”, ACM CCS 2018
[3] Tomer Laor et al., “ DRAWNAPART: Device Identification Technique
based on Remote GPU Fingerprinting”, NDSS 2022
[4] D. R. Dipta et al., “Df-sca: Dynamic frequency side channel attacks
are practical,”, ACM ACSAC 2022
[5] M. Lipp et al., ““Platypus: Software-based power side-channel attacks
on x86,”, IEEE S&P 2021
[6] Y. Qin et al., “Website fingerprinting by power estimation based side-
channel attacks on android 7”, IEEE TrustCom 2018
[7] Y. Chen et al., ““Powerful: Mobile app fingerprinting via power
analysis”, IEEE INFOCOMM 2017

Figure 1: Identical fingerprints using 
Fingerprint.js across 2 homogeneous 

systems.

Figure 2: Theoretical demonstration of 
a power-virus.

Figure 3: A plot with frequency values 
of 3 different systems when sine  
power-virus was being executed.

Figure 4: A demonstration of a hierarchical 
device type fingerprint tree.

Table 1: Statistical results across different classifiers.

0

50 00 00

10 00 00 0

15 00 00 0

20 00 00 0

25 00 00 0

30 00 00 0

35 00 00 0

1 43 85 12
7

16
9

21
1

25
3

29
5

33
7

37
9

42
1

46
3

50
5

54
7

58
9

63
1

67
3

71
5

75
7

79
9

84
1

88
3

92
5

96
7

10
09

10
51

10
93

11
35

11
77

A- 1 A- 2 A- 3 A- 4 B- 1 B- 2 B- 3 B- 4 C- 1 C- 2 C- 3 C- 4


